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Abstract. The most efficient way to constrain the photon mass (mph) is related to observations of large-
scale magnetic fields in space physics and astrophysics.  This approach is based on the change in the 
Ampere law caused by the finite mph. In 1990s, a consistent set of MHD equations allowing for the finite 
mph has been written and later used to analyze the solar wind data from the Voyager 1 and 2 missions. This 
lead to an estimate mph <1.5×10-51 g, the value currently recommended by the bi-annual compendium of the 
Particle Data Group. The further progress in constraining the photon mass may come from considering the 
dynamics of large-scale magnetic fields in astrophysics, in particular, the magnetic field of galaxies. The 
paper is concerned with related opportunities and challenges, including the problem posed by the 
simultaneous presence of large-scale and much stronger small-scale magnetic fields. Effects of recycling of 
the interstellar plasma involving dense molecular clouds, protostars and supernovae explosions are 
discussed. Possible approaches to pushing the upper bound to a limit well below 10-51 g are discussed.  
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I. INTRODUCTION 
 
The model of a massive photon was introduced in the modern physics in the 

1930s, when so-called Proca equations have been suggested to describe a massive spin-1 
particle [1]. Over the years, this model has been thoroughly tested for consistency and 
applied to a variety of physics problems (e.g., [2, 3]). The photon mass (mph) in this 
model is a parameter that has to be determined experimentally.  

One of the first successful steps in this direction was made by E. Schroedinger [4] 
who noticed that the vector potential A of a magnetic dipole m falls off at large distances 
exponentially, in the Yukawa fashion:   

! 

A = (µ /r2)exp("r /D), with   

! 

Dbeing the Compton 
length of a massive photon,  

    

! 

D = h /mphc ,          (1) 
and c and h being the speed of light and the Planck constant, respectively. Throughout 
this paper we use CGS system of units. The “classical” Maxwell equations predict a 
power-law dependence, 

! 

A ~ 1/r
2, so that, at large enough distance from the source, the 

exponential term would lead to the observable deviations from the power-law scaling. As 
  

! 

D  is directly related to the photon mass, determining   

! 

D  is equivalent to determining the 
photon mass. Schroedinger applied this approach to the Earth magnetic field and could 
not see significant deviations at the distances ~ the Earth radius. So, he could only 
constrain the Compton length from below, and, therefore, the photon mass from above, 
mph<10-19 me, with me being the electron mass.    Already this estimate has shown that it 
would be incredibly difficult to observe any effects of the finite photon mass in atomic or 
nuclear phenomena and also determined the strategy of the further attempts on improving 



(lowering) the upper bound.  This strategy was the observation of magnetic field of 
various celestial bodies at large distances from them. A brief history of these earlier 
attempts is summarized in Ref. [5]. An insightful review of the photon mass issues was 
written recently by A. Goldhaber and M. Nieto [6]. 

Going to even greater scales means that one will have to account for the presence 
of the ambient plasma, which, generally speaking, carries non-negligible currents. 
Therefore, getting to larger scales makes it necessary to analyze a coupled system of the 
magnetic field and a plasma, and the dynamics of the conducting medium becomes an 
inseparable part of the problem, see, e.g., Refs. [7-10]. 

In the classical domain (as relevant to the subject of this paper), the finiteness of 
the photon mass manifests itself in the change of the Ampere law, which now becomes:  
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with B , A and j being the magnetic field, the vector potential, and the current density, 
respectively, and 

! 

B = " # A . We neglect the displacement current, as we consider only 
slow non-relativistic processes. Eq. (2) is a consequence of the Proca equations, 
describing a massive photon [1]; see also Refs. [2, 3, 6, 7]. The finite photon mass enters 
the problem via the second term in the left-hand side (l.h.s.) of Eq. (2): for the zero-mass 
photon (  

! 

D "#) we recover the standard Ampere law.  
 The expression for the ponderomotive force acting on the current-carrying 
medium remains the same as in zero-photon-mass electrodynamics  
 
 

! 

f = j " B /c ,         (3) 
 
irrespectively to the possible finiteness of mph [3, 7]. For the case where the length-scale 
L is small compared to   

! 

D , one can neglect the second term in the left-hand side of Eq. 
(2), evaluate j as     

! 

cB /4"L  and obtain the “standard” estimate of the ponderomotive force,  
 

! 

f ~
B
2

8"L
.         (4) 

 
Conversely, for the case where L is large compared to   

! 

D , one has       

! 

j ~ cA /4"D
2 ,   

! 

A ~ BL , 
so that the ponderomotive force increases significantly and becomes 
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The photon mass limit quoted in the latest edition of a bi-annual compendium of a 

Particle Data Group [11] was obtained in Ref. [5] by the analysis of the solar wind data at 
the Pluto orbit collected by the Voyager 1 and 2 missions. The approach used in Ref. [5] 
was as follows: Based on the knowledge of the global magnetic field of the Solar wind, 
one could evaluate its vector potential A and - via Eq. (2) - the current j required to 
sustain the observed magnetic field B. This is particularly simple for the zone well 



beyond the Earth orbit, where the average B is almost entirely azimuthal. The latter was 
predicted in the original Parker model [12] and confirmed up to the distances of tens of 
astronomical units by a number of space missions [13-15]. The average flow in this zone 
is strongly supersonic and essentially radial, with the average velocity in the equatorial 
region vr≈450 km/s independent of the distance (“ballistic” flow).  

For a large-enough photon mass (small-enough   

! 

D ), the second term in the l.h.s. of 
Eq. (2) becomes dominant, and j becomes much larger than in the case of a massless 
photon. This leads to the increase of the j×B force compared to the mph=0 case. For a 
large-enough value of mph (small enough   

! 

D ), deviations from the observed flow structure 
would become grossly incompatible with observations, thereby setting the upper bound 
on the photon mass. This then yielded an upper bound for mph at the level of mph<  
1.5×10-51g [5]. 

This limit is based on direct in situ measurements and in this regard is as reliable 
as the limits established in the ground-based laboratory experiments in particle physics.  
The constraints of this type are sometimes called “hard” constraints [7] to contrast them 
to more speculative estimates not based on the observational data of the same level of 
details.  

It is tempting to apply the same type of arguments to much larger systems, in 
particular, to tenuous magnetized interstellar plasmas in galaxies. The potential benefits 
should come from a large disparity of the “hard” limit on the Compton length  and a 
very large global scale L of the problem. This point was made half a century ago by 
Yamaguchi [16] and then applied to Galactic magnetic field of the scale of 1 kpc by 
Chibisov [17]. More recently, these arguments were repeated in Ref. [18], with a 
conclusion that the limit on the Compton length can be raised to 1 kpc and the limit on 
the photon mass lowered, respectively, to ~ 10-59 g. 

In this paper we  discuss assumptions made on the way to this conclusions and 
find that the claimed limit cannot be considered as a “hard” limit, due to numerous 
uncertainties present in this problem. We try to identify a way to obtaining a “hard” 
(although much higher than 10-59  g) estimate. In Sec. II we discuss an idealized model 
used before and describe a way in which the estimate of 10-59  g  was obtained. In Sec. III 
we discuss the difficulties of an approach based on the virial theorem for the interstellar  
medium. In Sec. IV we present arguments in favor of obtaining a “hard” estimates by 
assessing the dynamics of relatively well characterized objects of the type of dense 
molecular clouds.    
 

II. AN IDEALIZED MODEL AND ITS DIFFICULTIES 
  
A simplest, strongly idealized model of a spiral arm would look as shown in Fig. 1a, an 
elongated plasma volume, with a quasi-uniform plasma and a quasi-uniform magnetic 
field directed along the larger dimension. Denoting the perpendicular size of the structure 
shown in Fig. 1 by 2a, one can make various assumptions regarding the ratio of   

! 

a /D  and 
consider the consequences.  

One of the additional assumptions that one makes is that the system is in an 
“equipartition” state, i.e., the kinetic energy density is of order of the magnetic energy 
density and of the order of the total kinetic pressure p, that includes the pressure of a 
thermal gas and cosmic rays,  



 

! 

"v2 ~ p ~ B2 8#         (6) 
 

If one wants to consider the initial state as the state of equilibrium, one has to 
make some assumptions about the gravitational potential that keeps the gas from radial 
expansion. One can assume that the gravity is provided by the stellar material and, on 
larger scales, by the dark matter. In this model, the perpendicular dimension is set by the 
condition of hydrostatic equilibrium in the gravitational potential well,

! 

p /a ~ "g . This is 
a rough estimate, valid up to the factor of 2-3, due to the fact that the equilibrium is 
affected also by the ram pressure and the magnetic pressure. Equipartition assumption (6) 
tells us also that 

! 

B
2
/8"a ~ #g . 

 
 
 
 
 
 
 

 FIGURE 1. A sketch of an “isolated” piece of the spiral arm, with 2a~1 kpc, and D~ 10 kpc. 
 
Assume now that the photon Compton length is significantly shorter than a. In 

this case, the 

! 

j " B  force, as was mentioned in the Introduction, becomes significantly 
larger than 

! 

B
2
/8"a: according to Eq. (5), it becomes of order of   

! 

(B
2
/8"a)(a2 /D2

) . Then, 
there is no way for the system shown in Fig. 1 to be in the mechanical equilibrium: with 
the equipartition assumption (6), the ponderomotive force (5) is much larger than all 
other forces involved. In other words, the system under consideration cannot be in an 
equilibrium. This consideration is then used as a proof that the condition     

! 

D < a  is 
incompatible with observations and, therefore, a condition  

 
  

! 

D > a           (7) 
 

must hold. For a~1 kpc, it yields exactly the limit mph<10-59 g.  
 This approach has, however, two flaws: 1) The interstellar medium is not an 
isolated dynamical system. It is continuously “recycled” by more massive and energy-
rich constituents of the spiral arm: supernova (SN) explosions, intense outflows from 
OB-type stars (“superbubbles”), condensation into dense molecular clouds, etc. 2) The 
magnetic field is grossly non-uniform, thereby making the estimate   

! 

A ~ Ba  questionable. 
For a review of the interstellar medium see Ref. [19]; for the magnetic field structure and 
the presence of smaller-scale fields see Refs. [20,21].   This more realistic (than Fig. 1) 
picture of the spiral arm is shown in Fig 2.  

There is no reason whatsoever to think of the interstellar medium as an isolated 
system being in the state of a long-term equilibrium.  Assume that we have identified a 
parcel of some size L<a, which is not affected by the aforementioned energetic processes 
and assume that  

! 

D  is significantly shorter than L. Then, indeed, fast flows on the scale of 
this parcel will ensue, with the acceleration of order of  

     2a 

  D 
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The time for a significant deformation of the initial parcel will be 
 

 
  

! 

" ~ L / ˙ v ~
L

D

L

B
2
/8#$

% 

& 
' 
' 

( 

) 
* 
*        (9) 

 
In order this evolution to happen, there should not be major energetic events occurring in 
the volume under consideration for the time τ. Take, for example, a parcel of the scale of 
L~300 pc. Under the equipartition assumption (6) the Alfven velocity is of order of the 
sound speed in a 1 eV hydrogen plasma, this meaning that the time τ will be of order of 

  

! 

"(yr) ~ 3 #107 300 /D(pc)[ ] . On the other hand, the SN explosion in the parcel with the 
volume of (300 pc)3 occurs, on average, once in 105 year [19] and release energy 
comparable to or higher than the magnetic field energy in this volume. Constraining τ by 
105 yr, one finds that the limit on   

! 

D  becomes D>3pc, this corresponding to the mass limit 
mph<3⋅10-57 g, i.e., 300 times softer than the “naïve” estimate (7). This example should 
not be considered as establishing a new, “realistic” upper bound; it just shows that the 
interstellar medium cannot be considered as an isolated system, is continuously raked by 
various energetic events, and the basic logic that has lead to Eq. (7) does not work.   

 
 
FIGURE 2. A segment of the spiral arm with the low-density interstellar medium shown in light-blue. Red 
irregular stars indicate supernova explosions, an yellow five-point stars indicate regular stars. Blue arrows 
indicate accumulation of mass by dense molecular clouds. Exchange of mass, momentum and energy 
between the interstellar medium (ISM) and other constituents of the spiral arm sets the time-scale within 
which the ISM can be considered as an isolated system. 
 

III. CAN ONE USE THE VIRIAL THEOREM? 
  

The same problem arises if one attempts to assess the behavior of the interstellar 
medium by means of the virial theorem, as was suggested in Ref. [17] and discussed in 
Ref. [18] (see Eqs. (17)-(18) of the latter paper).  If one considers interstellar medium as 
an isolated system confined by the “averaged” gravity g of a stellar matter and, possibly, 
of the dark matter, the virial integral becomes  
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The main problem with it is, again, that we are dealing not with an isolated system, but 
with a system interacting with much more massive and energy-rich constituents of the 
Galaxy (for details see [22]). One cannot just balance different terms against one another 
and, from the lack of such a balance, come to some constraint on the photon Compton 
length.  

The virial theorem reveals one more problem in the idealized approach of Sec. II. 
Specifically, this approach relies on the assumption that the magnetic field can be 
characterized by a single scale comparable to the global scale of the problem (a in Fig. 1). 
In reality, there is certainly strong random magnetic field with the scales much smaller 
than a. The r.m.s. value of this field is at least an order of magnitude higher than that of 
the average field. More details on that issue can be found in Refs. [19,20].  
 With regard to a global magnetic field, the one that has a non-zero average over 
the scale a, one should be very cautious. Its  determinations from the Faraday rotation of 
the polarized radiation of pulsars is based on a so-called rotation measure, which is 
proportional to the line-of-site integral of plasma density and the magnetic field. The 
higher density regions, therefore, introduce a bias in the field measurements [21]. One 
can even think of a situation where the average field is zero, but the rotation measure is 
non-zero [6]. Not trying to resolve this difficult problem, we consider possible effect of 
the presence, alongside with the average magnetic field B, also a much stronger 
fluctuating field 

! 

˜ B >> B . Let the spatial scale of this fluctuating field be   

! 

b < D << a . 
Then, obviously, the right-hand-side of Eq. (10) will exceed the first term in the left-hand 
side and cause contraction of the plasma only if   

! 

D < a(B / ˜ B ). In other words, we again 
obtain a constraint that is much weaker than (7).  
 

IV. A “HARD” UPPER BOUND FROM ASTROPHYSICAL 
OBSERVATIONS 

 
In order to obtain a reliable constraint on mph (or, equivalently,   

! 

D ) from the 
behavior of interstellar medium, one needs to fulfill several conditions.  

First, there should be information about the magnetic field and its structure. 
Important in this regard is the possible presence of multiple scales. The small scales can 
be critical in getting the correct upper bound.  

Second, an area in the observational domain should be identified which is not 
affected by various energetic events, like SN explosions, massive outflows from young 
stars, or, conversely, condensation of the lower-density gas into denser molecular clouds. 

Third, an observational signature of what would be different from the “normal” 
behavior (corresponding to a zero-mass photon) should be identified. An absence of such 
a signature would then mean that the photon mass is smaller than expected, this leading 
to a new upper bound.  

As we have seen, the attempts to use the galactic magnetic field for constraining 
the photon mass have not met these requirements thus far. Significant uncertainties exist 
with the issue of the magnetic field structure; there are no clear predictions of what 



specific effects should be looked for. Also, energetic events make the isolation of purely 
ponderomotively-driven dynamics quite difficult (See Sec. II). This last point may favor 
moving away from the star-rich spiral arms to the inter-arm areas. On the other hand, 
these areas are also strongly affected by the effects like SN explosions and super-bubbles, 
which encompass areas well beyond the thickness of the galactic disk and inter-arm 
distances. 

It might be worthwhile to focus on the galactic halo, where some magnetic field is 
present as well. On the other hand, the information about its structure is scarce, and the 
presence of a small-scale component is a distinct possibility.  

Certainly, the very fact that the spatial scales of the galactic systems are 
incredibly large compared to the size of the Solar system supports an intuitive belief that 
the behavior of the gas in galaxies can lead to much stricter constraints than the presently 
accepted “hard” constraint on the photon mass. The author shares this belief but at 
present this new limit seems to be somewhat elusive.  

To identify possible observational strategies, we present Fig. 3, where the 
evolution time (9) of a certain parcel of matter under the action of the Proca 
ponderomotive force (5) is shown for various assumptions regarding the ratio     

! 

L /D . We 
present the results as normalized to the Alfven crossing time L/vA, with 

    

! 

v
A
" B 4#$  

being the “standard” Alfven velocity. The velocity reached by a matter within the parcel 
by the time t, when significant deformation of the packet occurs, is (see Eq. (4)) 
    

! 

v = v
A
(L /D) . Note that, for small-enough   

! 

D , this velocity approaches the speed of light 
c. The parts of the plots corresponding to reaching relativistic velocities cannot be 
described by our analysis and are shown as dashed lines. The presence of these of this 
relativistic constraint can also be used to limit the photon mass, but one still needs to 
have a good information about the magnitude of the quasi-uniform magnetic field, the 
absence of small-scale random fields, and be able to identify the absence of any 
observational signatures of the predicted dynamics within the time τ. 

 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 3. Evolution time τ (Εq. (9)) and the characteristic velocity v reached by the time τ vs 

 the     

! 

L /D  ratio. The domain requiring relativistic description for vA=30 km/s is shown by dotted 
 lines. 

 
Perhaps, the best chance to advance the “hard” limit is to look at some well-

defined objects, like astrophysical protostellar jets or dense molecular clouds. In both 
cases the magnetic field seems to play a significant role in the overall dynamics and, at 
the same time, these objects are well localized and should not experience interference 
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from other objects. As their scale is in the range of one parsec, one can hope to bring the 
“hard” limit to this value,       

! 

D >1pc , or mph<10-56 g. 
One more approach would be to apply the current “hard” estimate to the galactic 

system in the hope that, for large-enough photon mass, some phenomena would become 
wide-spread, observable in our Galaxy and other Galaxies as well. One such possibility is 
identifying hydrodynamic acceleration processes induced by strong domination of the 
Proca contribution (5) to the ponderomotive force (see Appendix). If the photon Compton 
length is indeed small, one can expect acceleration of collapsing parcels of gas to 
relativistic energies. For the presently accepted mass, and magnetic fields ~ 1 µG this 
would occur for the scales exceeding ~ 1 pc.   

 
V. DISCUSSION 

 
 Improving a “hard” upper bound on the photon mass, established from the in situ 
measurements of the Solar wind requires a knowledge of magnetic field structure in the 
range from 1 kpc to a fraction of a pc. The possible presence of a significant small-scale 
random field complicates any attempts to find this better “hard” limit. The other 
complication comes from various energetic events that continuously “stir” the tenious 
interstellar plasma. Some progress can possibly be made by analyzing the dynamics of 
well-localized objects like protostellar jets and dense molecular clouds, but this would 
require better knowledge of the magnetic field present in these objects.  
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APPENDIX: 1D EQUATIONS OF PROCA 
MAGNETOHYDRODYNAMICS 

  
It is instructive to provide a brief analysis of 1D motion for the Proca 

magnetohydrodynamics [10]. Assuming that the variation occurs in the x-direction, the 
magnetic field is along z, and vector potential is along y, one obtains, for the perfectly 
conducting medium, the following set: 
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where v stands for the x-component of the velocity. Assuming that the vector potential at 
large |x| tends to zero (as required by the finiteness of the total energy), one sees that the 
line-tying equation leads to the following equation for A: dA/dt=0, i.e., the vector 
potential is advected together with the fluid element. This observation allows one to 
conclude that, for the system with the scale-length. The presented set of equations 
possesses the energy integral,  

  

! 

dx
"v 2

2
+
B
2

8#
$

A
2

8#D
2

+
p

% $1

& 

' 
( 

) 

* 
+ , = const   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 FIGURE 4. Initial distribution of B and A discussed in the Appendix. 
 

If one starts from the distribution of various quantities as shown in Fig. 4, with a 
strong domination of the ponderomotive force associated with the vector potential, one 
can neglect the pressure and magnetic field terms in the dynamic equations. Initially, 
there will occur an acceleration of the gas with its strong compression, but eventually the 
magnetic pressure takes over and causes a rebound. For small enough   

! 

D , the motion near 
the rebound point would become relativistic (not described by our equations). The 
absence of such occurrences might serve as a way for establishing a better constraint on 
the photon mass. On the other hand, if the photon mass was large-enough, these areas of 
a relativistic acceleration could be widely spread in the Universe and serve as one more 
candidate for cosmic ray generation.   
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